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1. Introduction

In this paperwe presentsomedetailedcomputationsof partition functions
in what is one of the simplestexamplesof three-dimensionaltopological field
theory, which was definedby Dijkgraaf andWitten [1]. It is an analogof the
morewell-knownChern—Simonstheory[2] in the caseof finite gaugegroups.To

eachcompact,closed,orientedthree-manifoldM it associatesacomplexnumber
Z(M) (the partition function), which is a topological invariant of M. This
invariantdependsonlyon thefinite groupG, andthecohomologyclassof athree-
cocyclew with values in U (1). In the sameway as the Chern—Simonstheory
is relatedto the two-dimensionalWZW model, the Dijkgraaf—Wittentheory is
related to anotherclassof conformal field theories,the so-calledholomorphic
orbifolds [3].

Following ref. [1] we will give an elementarycombinatorial definition of
Z (M) in terms of a triangulation.A more abstractdefinition involving Eilen-
berg—MacLanespacesK (G, 1) wasalso given by the sameauthors,butwe shall
not use it here.Recentlyin ref. [4] we took anotherapproach,startingfrom a
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surgerypresentationof M to definea three-manifoldinvariantT(M) depending
on the samedataG, w. More precisely,extendingthe Reshetikhin—Turaevcon-
struction [5,6] to the caseof quasi-Hopfalgebras[7], weconsideredinvariants
of links coloredby the regularrepresentationof a finite-dimensionalquasitrian-
gularquasi-HopfalgebraD~°(G),andthenprovedthat theyareconservedunder
Kirby moves [8].

WeconjecturedthatZ(M) andF(M) areequal (up to a normalization)and
checkedit in a few cases.ThealgebraD~°(G)wasdefinedpreviouslyin ref. [9],
where it was shown that the structureconstantsof its ring of representations

agreewith the fusion rules of ref. [3].
So far a proofof the aboveconjectureis still lacking. The main difficulty

is to relate the two presentationsof M, by triangulationand surgery. In the
sequelwefirst give the definition andsomegeneralpropertiesof the partition
function Z(i%f). To illustrate these, we presentdetailedcomputationsof the
invariantsof lens spacesZ(L(p, q)), and thengive a generalformula for the

surgeryinvariants .F(L(p,q)).
Beforewestart to study the invariants,let us recall the definition of a three-

cocycle. Let Gbea finite group.We denoteits orderby G~,andthe unit element
by e. A three-cocycleis a map G>< G x G —~ U (1) satisfying

w(g1.g2.g3)w(g1,g2gJ,g4)w(g2.gJ.g4)

= w(g1g2,g3,g4)w(g1,g2,g3g4) (1.1)

for all g e G, I = 1 4. We also assumethat w is normalized, i.e.,
w(g1,g2,g3) = 1 if at least one of the argumentsgj = c. Later we will use
severalidentities which are consequencesof (1 . 1). They are collected in the
appendix.

Oneknows [1,4] that the invariants we considerbelow dependonly on the
cohomologyclassof w: they are invariant underw ~ w/~.Here ij is a normal-
ized two-cochain,i.e., amap G x G —~ U (1) suchthat ij (x, i’) = 1 if x or v =

and

~ii(x,v,z) = ~(v,z)t~(xy,z)’ij(x,vz)t~(x,v)~
1. (1.2)

Sometimeswe will use the following definitions: {CA}A,1 will denotethe
setofconjugacyclassesof G, CAlthenumberofelementsinC

4 and{g~}~~pa
systemof representativesof theseclasses.Also, in thispaperthe notation (in, n)

standsfor the greatestcommondivisorof two integersin andn.

2. Dijkgraaf—Witteninvariants

Let M be a compactorientedthree-manifoldwithout boundary,and T be a
triangulation.Denoteby T’ the setof j-simplicesof T. An orientedtetrahedron
t E T

3 is given by an orderedfour-tupleof vertices, 1 = (abcd),a, h, c,d E T°.
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Similarly a triangle is given by an orderedtriple (abc) E T2, and anedgeby a
couple (ab) E T’.

Thedefinitionof thepartitionfunctionis in many respectsanalogousto lattice
gaugetheory. In particular,the dynamicalvariableslive on the edges.Thus we
definea stateto be a mapp : T’ —* G, (ab) ~ gab, suchthat for any triangle
(abc) E T2, the flatnesscondition ~ab ~ ~ca = e is satisfied.We also assign

~ba = g;~to the edge (ba) with the oppositeorientation.
The valuesof p on the edgesof a tetrahedront = (abcd) are completely

determinedoncegab, ~bc and~cd aregiven. We definethe weight oft by W~=

w(gab, gbc, gcd), andthe weight of astatep by

W(p) = [J W
1. (2.1)

tET

3

Thepartitionfunctionis asumoveracertainsetof states,which mustbedefined

carefully in order to avoid overcountingdueto gaugeinvarianceof W, as we
now explain. Any function Q : T°—* G, a ‘—i Qa, gives rise to a new state

(ab) ~ Q~gab Q~’. It can be shownthat (1.1) implies that W is gauge
invariant, W(p~)= W(p). Thegroupç of gaugetransformationsactson the
setof all statesM. Considerthe subgroup~oconsistingof thoseQ which leavea
distinguishedpoint * E T°fixed: Q,~= e.Thenthe Dijkgraaf—Wittenpartition
function is:

Z(M) = ~ W(p). (2.2)
PE M /g

0

Oneproves[1,10] that Z(M) is independentof thetriangulation T, so that it
is a topological invariantof orientedmanifolds.Furthermore,Z (M)/Z (S

3) is
multiplicative underconnectedsum.

Our conjectureis that Z(M)/Z(S3) is equalto the surgeryinvariantY(M)
describedin ref. [4] . In the simplercaseof a trivial cocyclethis hasbeenproven
byHennings[13].

Notethat if M is connected,then thereareno gaugetransformationsQ E ~o
suchthat p’2 = p otherthan the identity. This is becausefor anyvertexa e T°,
thereexistsa path Ya going from * to a consisting of edgesof T’. Then for
any vertex a E T°,the orderedproduct g(ya) of elementsgxy along this path
transformsinto g’2(y~)= g(ya)Q~’ = g(ya), henceQa = e.This implies that
the orbit of any statep has IG~~elements,wherev is the numberof vertices,
and

Z(M) = GI~~ W(p). (2.3)
pEM

Proposition 2.1. There is a one-to-onecorrespondencebetween M/g
0 and

Hom(n1 (M), G).
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[Here by ir~(M) we really mean the fundamentalgroup it
1 (M, *) with

basepoint*.]

Proof To each statewe can associatea homomorphismx : iti (M) —p G by

taking the orderedproductsof elements~ab along closedpathsbasedat *. This
mapping factorsthrough the projection Q : M —~ M/g0. Call P the quotient
map M/c0 —~ Hom(ir1 (M), G). Conversely,for any suchmorphismx we can
constructa statep’ in the following way. First we choosefor eacha e T°a path

Ya from * to a. Then, if (ab) e T
1 we set ~ = .X ( [YabI), where Yab is the

closedpath obtainedby joining Ya, the edge (ab) and the path Yb takenwith
the oppositeorientation,and [Yab] is its equivalenceclassin it

1 (M). Call this
mappingX, X : Hom(m1(M), G) —p M, ~ ~—+ p’. Let usnow provethat

Pa QoX = IdHom(,~(M)G)

QoXoP = IdM/c0.

First noticethat if (*a) E T’, then g~,which is the imageby x of the trivial
homotopyclass,equalse. Along a path y : * —~ a1 —~ a,~—* *, with
(*a1), (a1a1+i), (a~*)E T’ onecan expresstheorderedproduct g’(y) as

g’(y) = g~, g2~-g~ = X([Yaa2])~X([Ya~aj)

= X([Yaia2~Ya~iaj) =

proving the first equality.For the secondone,considerp = {gab}, a represen-
tative of a classmodulo~o, build x = P([p]) and p’ = {g~}= X(~).We

now defineQa as the orderedproductof the elementsgxy from * to a alongthe
chosenpath Ya, andalso set Q~= e. Thenby definition ~ = Qa ~ab Q~

1for
every (ab) E T’, proving that X(x) andp are in the sameclassmodulo ~. ~

An immediateconsequenceis that Z(S3) = GI~,becauseit
1 (S

3) = 1.
BeforediscussingtheexamplesM = L(p, q), we would like to sketchanother

descriptionof statesin terms of fiber bundles,which is used in refs. [1,11].
Considerprincipal fiber bundlesp : E —* M with structuregroupcontainedin
G, or G-bundlesfor short. Two G-bundlesp : E —* M andp’ : E’ —* M are
calledequivalentif thereis ahomeomorphismh : E —* E’ suchthatp’ a h = p.
Now from the definition it is clear that each statep definesa G-bundleover

M: just choosea suitableopenneighborhoodUa of eacha e T°and interpret
the ~ab as transitionfunctions in Ua fl Ub. Conversely,eachG-bundlewith the
coordinateneighborhoodsUa determinesa statep E M.

A theoremof ref. [121 implies that two statesp and p’ define equivalent
bundlesif and only if p’ = p’2 for some Q E ~7.Hencewe havea bijection
betweenM/~andthe equivalenceclassesof G-bundles.On the otherhand,to
eachG-bundlewe canassociateahomomorphismx : ir

1(M) —~ G by lifting the
closedpathsin M to the total space.According to anothertheoremof ref. [12]
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two G-bundlesareequivalentif andonly if the correspondinghomomorphisms

x andx’ are equalup to a conjugation:x’(y) = gx(y)g~,for some g e G.
Thus we get anotherbijection, betweenequivalenceclassesof G-bundlesand
Hom(m1 (M), G)/G.

3. Dijkgraaf—Witten invariants for lens spaces

Lens spacesL(p,q), 0 < q < p, (p,q) = 1, are oriented compact three-
manifolds,which result from identifying on thesphereS

3 = { (x, y) E C2 I Ix 2 +
2 = 1 } thepointswhichbelongto thesameorbit underthe actionof Z~defined

by (x,y) ~ (wx, way) with w = exp(2im/p).
Let usrecall someimportantresultsaboutlensspaces[141. The fundamental

groupof L(p,q) is 74g. L(p,q) andL(p,q’), arehomeomorphicif andonly if

q = ±q’ (modp) or qq’ = ±1 (modp). (3.1)

They areof the samehomotopytype if andonly if thereexistsanintegerasuch
that

qq’ = ±a2 (modp). (3.2)

In all casesthe orientationsarepreservedif andonly if the relevantsign is +.

(Two manifoldsM andM’ aresaidto be of thesamehomotopytypeif andonly

if thereexistcontinuousmappingsf : M —~ M’, g: M’ —~ M, suchthat f o g
andgo f arehomotopicto theidentity.) Forexample,L (5, 1) andL (5, 2) have
differenthomotopytypes,whereasL (7, 1) andL (7, 2) havethesamehomotopy
type, but they arenot homeomorphic.

A triangulationof L(p,q) is obtainedby gluing togetherp tetrahedra(a
1,b1,

c,d), I = 0,. . . , p — I accordingto the following identification of faces(I + 1
and i + q areunderstoodmodulop):

(a1,b1,d1)= (a1+j,b1+i,c1+1), (3.3)

(a1,c,d,) = (bi+q, cj+q, di+q) . (3.4)

The identifications of (3.3) can be realizedby embeddingthe p tetrahedrain
euclideanthree-space,leadingto a “prismatic solid” with p + 2 verticesa, b,c
2p externalfaces,3p externaledges,andone internalaxis (a,b). Thenformula
(3.4) is interpretedas the identification of the surfacetriangles(a,c,,c,+i) and
(b,cj+q, c1+t +q).

A stateon this triangulation madeof p tetrahedra(a,b,c,,c,+i), i e l,,, is
definedby g = gab, h = ~ k, = gcc,~.The flatnessconditionsread

= hk1 , (3.5)

gac, = gh1 . (3.6)
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Then identifying faces (a, c,c1+i) and (b,c,+q, c,+ i +q) gives

k = ki+q , (3.7)

gh, = h+q . (3.8)

Since (p,q) = 1, k1 = k is independentof 1, (3.8) implies that gP = e andfor
any n, guihj = ht+nq, so that ifn is the inverseofq modp, onegetsh,+ =

which comparedto (3.5) gives k = h~lgnh,.Conversely, the data g,h e G
with gP = e determinea stateon theabovetriangulationof L (p, q) throughthe

formulas

gi = ~ab = g, h1 = g’~h, k, = h~gu1h. (3.9)
The weightassociatedto sucha stateis

p—I p—I

W(p) = flw(g1,h1,k1) = flw(g, g”~h,h~g~h)

= fi w(g, g
1h, h’g~h). (3.10)

j=0

In this caseall gaugetransformationsareofthe form

g—+QagQ~T1, h—~QahQ~’. (3.11)

Gaugeinvariancemeansherethat for any g (gP = e) andh,
p—I p—I

fi w(g, g’h, h~g°h)= fl w(g~,g~,g~), (3.12)
j=0 1=0

whereg~is a representativeof theconjugacyclassCA of g, anidentity which one
canprovedirectly, seeformulas(A.2) and(A.3) oftheappendix.TheDijkgraaf—
Witten prescriptionto considera sumover orbits undergaugetransformations
with, say, Qa = e, thereforeamountsto a sum over g only, leading to the
following expressionof the invariant of L (p, q):

p—i

Z(L(p,q))/Z(S3) = ~ flw(g,g1,g”)
gEG~gP=e j=1

p—i

= ~ ICAIfJw(gA,g~,g~). (3.13)
AJg~=e j=I

Using (A.4) we arrive at the final expressionvalid for any three-cocyclew and
any finite group:

Z(L(p,q)) = IG~ ~ CAl w~, (3.14)
A

whereWA = fJ~’I~ w(gA,g~,g~)is apthroot of unity built from valuesof w on
the cyclic groupgeneratedby gA andn is the inverseof q modp. Note that if in
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(2.2) the summationhadbeentakenoverthe orbitsof all gaugetranformations,
insteadof over the orbits of g0, onewould haveobtainedthe different number

K1’ >IA~g~=ew~,which may not havethe right properties,sincetheso-called
globalgaugetransformationswould nothavebeentreatedin anappropriateway.

Now we would like to seehow theseinvariantsbehavewith respectto the
aboveclassificationtheorems(3.1), (3.2). From (3.14) we get immediately

Z(L(p,p — q)) = Z(L(p,q))*, (3.15)

so that changingthe orientationresultsin complexconjugation.
Next, supposethat q andq’ are invertible modp andthat their product is a

squareqq’ = a
2 (modp), denoteby c its inverseand by b = ac the inverseof

a, c = h2. Let n, n’ be the inversesof q, q’, andC~= {A I g~ = e}. Sinceqb is
invertible g ~—* g~ inducesa one-to-onemappingof C~into itself: A i—* B such
that g~is conjugateto g~. Furthermore CAl = CBI, so that using (A.4) we
can rewrite (3.13) as

p—I

Z(L(p,q))/Z(S3) = ~ ICnIflw(gn,g~,g~)
BEC~ j=I

p—I
= ~ cA~flw(g~g~g~)

AEC~ j=I

p—I

= ~ICAI fJ w(g~,g~,g.~)
j’=l

= ~ CAl W~= ~ CAl W~’
AEC~

= Z(L(p,q’))/Z(S3). (3.16)

We havethereforedirectly shown that for any three-cocyclew and any finite
group, Z(M), in the class of lens spaces,is an invariant which is sensitive
to orientation through complexconjugation,and takesthe samevalue for all
manifoldsof the same(oriented)homotopytype.We do notknow if this holds
in general.

Let usnow specializeto the caseof a cyclic groupG = /ZN whosecohomology
group H3 (G, U (I)) is cyclic of order N, with representativecocycles:

w~(x,y,z) = exp [(2iit//N2)±(~ + il — x + 3?)] , (3.17)

whereI = 0,. . . , N — 1, and ~ denotesthe integerbetween0 andN — I repre-
sentingan elementx E ZLN. W’N is equalto 1 exceptif~ + ~ > N whenits value
is exp(2iitl±/N).Put in = (N,p). We shallnow provethat in this case(3.14)
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is equal to
rn-IZ(L(p,q)) = ~exp(2~’° k2) , (3.18)

wheren is the representativein {0 p— l} of theinverseofq modp. If in = 1

this invariant equals 1, otherwise it equals the value of a Gauss sum S(a,rn)
with a = lnp/rn:

Z(L(p,qfl/Z(S3) = S(a,,n) = ~exp(2iitak2/in). (3.19)

To prove (3. 1 8) we translatethe multiplicative notationsfor thegroupG, taken

to be the group of Nth roots of 1, into additive onesby the formula

g = exp(2iirg/N), ~e {0 N— 1}.

Then

g’~=c ~ N~p~ ~

~r~’ ~k E {0 m l}, ~ = kN/in , (3.20)

and (3.14) reduces to

rn-i

Z(L(p,q))/Z(53) = >exp(2iitInklSk~/rn), (3.21)

where SkI is the number of elements of the set

Sk ={je{l,...,p—l}l~+~>N}.

[Remember that from (3.20), ,~ dependson k.] But since ~(j + tn/(in, k)) =

gj + Nk/(m,k),one has

l5kl = (rn,k) {j E {1 (m/(tn,k)) l} Ig + f~�N}~.

Writing
k (tn,k)N

jg = ~ (rn,k) in

andnoticingthat j ~ j’ = jk/(rn, k) is aone-to-onemapOf/Zrn/(mk) into itself,
we get

SkI = R~(m,k) I{I’ e {l (m/(m,k)) — I) Ig + j’(m,k)N/rn> N}~.

Now set J = (in/(rn,k)) —j’. From j’(m,k)N/in = N—J(in,k)N/rn, one
finds ___________

g + j’(rn,k)N/m > N ~ J E {l,...k/(in,k)},

leadingfinally to l5kl = pk/tn and to (3.18).
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4. Surgery invariants

All lens spaces L(p,q), 0 < q < p, (p,q) = 1 are known [14] to havea
surgery presentation given by a finite chain of n unknottedcircles with integer
surgery coefficients Pi~P2~.. . ,p,,, all > 2. Such a chain represents the space
L(A~,An_i), where A~is defined recursively by

A0 = 1, A1 Pi, A2 —PiP2
1~ A

3 PIP2P3—P1P3, (4.1)

p,,) = ~ — Afl2(pI Pn—2). (4.2)

The last relation is equivalent to A~/A~.i= p,, — A0_2/Afl_i, leadingto the
finite continuedfraction:

,p~) _______

=pn_ IA~_1(p1,...,p~1) ... —

P2-

Notethat, sinceA~— A~_1= (p,., — l)A~_1— A~2,andPI,P2~.. . ,p,, � 2, then

A~>A0_1> ...> A1> A0 = 1. (4.4)

Onealso has

A~_~(ps,... ,Pn-i) A~_1(P2 p~) — A~(p1,.. . ,p~)A~_2(p2,. . . ,p~-i) = 1
(4.5)

i.e., q = A~_~(p~ ~ is prime top = ~ andthe inverseof
q modp is q’ = A~_1(p2,.. .,p,,). The proofof (4.5) goesby induction. Con-
versely,anynon-negativerationalnumberp/qgreaterthan 1 canbeexpressedas
a fraction like (4.3) with all p’s greaterthanor equalto 2: set B0 = p, B1 = q

and since (p,q) = 1 one can define recursively strictly decreasingintegers
Bk > 0 and integersqk > 2 suchthat Bki = qkB~— Bk+I. Stopat stepn when

= 1 and q~= B~_1. Then

p B0 I~2 // B3
—=—= q1——= q1— l~~q2—— =...,
q B1 B1 i’~ B2

givinga fraction like (4.3) with (Pi p,,) = (qn,...,q1).

From the data G,w one defines [9] the finite-dimensional algebra DW(G)

over C in terms of a basis {gL}, g,x E Gas follows:
x

gL hL = ~g,xhx’ Og(x,y)g~ , (4.6)
x y xy

where

Og(X,Y) = w(g,x,y)w(x,y, (xy)
1gxy)W(x,x~gx,y)~. (4.7)

This algebra is associative by virtue of (A. I) and has unit element

= ~gL.
gEG
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It hasthe structureof a ribbon quasi-Hopfquasi-triangularalgebra,described
in detail in refs. [9,4] allowing one to define topological invariantsof three-
manifolds .T(M) by the method explainedin ref. [4] and basedon the con-
struction of manifolds by surgery. By induction on n, the numberof circles

defining the lensspaceby surgery,we find

F(L(A~,A~_~))= ~ fi °g~k(gPk+I g~÷’) fi OgPi (gPI+IPI, gPIi)
g~gA,~e k=0 1=1

n p,,,—I

H [f w~g”” I gim
1’m IgPm I) (4.8)rn = I j,,, =

wherePk = (_l)kAk(pl Pk) and Ak is given by (4.2). As a consequence of
our conjecture,this expressionmustbe equal to (3.14). We havecheckedthis
equality with a computer for G = 7~N,w = w~.It is clear that a proof of this
equality would already rely on a consequent number of identities such as those
given in the appendix. So far we have only been able to prove it for any G, w in
the casesn = 1, where (4.8) reduces to (3.13), and n = 2, (PI,P2) = 1.

A.C. thanksLAPP for the kind hospitality andfriendly atmosphere.

Appendix A

Wegive here someidentitiesinvolving normalizedcocycles which we found
ratheruseful.The first oneestablishesthat (4.7) definesa “twisted two-cocycle”,

i.e.,

Og(x,y)Og(~vy,z)= Og(X,yz)O~~ig~(y,z) - (A.l)

To prove it, simplify successively(A. 1) with the help of (1.1) written with

(gj) replacedby (x,y,z,(xvz)~gxyz), (x,v, (xy)~gxy,z), (g,x,y,z) and
finally (x,x~gx,y,z).

In the following, we supposethatp is a positiveintegersuchthat gP = e, but
h canbe any elementof G. Thenthe resultswhich areused in the main text are

p—i p--i

flw(g,gJh,h~gh1h)= flw(g,g’,g~) , (A.2)

j=0 1=0

p—i p—i

ffw(g,g’,g) = fi w(h gh,h_IgJh,h_igh) , (A.3)
1=0 /=0

p—i

flw(g’°,g1,g”) = (wg)m~, (A.4)
1=0
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whereWg is apth root of 1. Together(A.3) and (A.4) imply thatWg = WA only
dependson the conjugacyclassCA of g. To prove (A.2), we form the product
of k copiesof the cocyclecondition (1.1), substituting(g,) with (g, g’, g~i, h),
j = 0,..., k—l, anddivide it byasimilarproductfor (g,) = (g, gi, h,h~g~h).
We obtain

k—I j-
1k-i-n—1 j

w(g, gi, g ) llj=0 W~g,g

10 W(g,g’h,h~g’~h)fl~w(ggJh) fJ~’I~w(g,g’,h)

— W(gk,gn,h) AS
— W(gk,h,h_iguih)

Settingk = p weget (A.2). Anotheruseful form~ulais the casen = 1 of (A.5):

flw(g,g~h,h~gh) =Og(gk,h)flw(g,g1,g). (A.6)

To prove (A.3), form the products of k cocycle relations for (g,) replaced
by (g,h,h~g

1h,h~gh),(h ,gh,h~gIh,h~gh),(h,h,h~g1h,hgh),
thensimplify a factorinvolving five CU’S usingthecocycle relationswritten with
(h~,h,h_igkh,h_igh) and (h~1,h,h~1gh,h~1g”h).This gives

k—i k—i
fl w(g,g’h,h~gh) Og(h,h_Igkh)flW(h_igh,h_IgJh,h_igh),
j=0 j=O

(A.7)

thus settingk = p andusing(A.2) leadsto (A.3). To prove (A.4) considerthe
product of p cocycle relationsfor (g

1) = (g
m,gJ,gfll,gfl2). It is then easyto

seethat n ~ ft w(gm,g3, g”) is a homomorphismfrom the additive group 7L~,,
into U (1). Thereforethis productis of the form

p—i

f~0(grn,g3,gn) = exp2in~tnn/p.
j=0

By a similar argument with (g
1) = (g

m,gm2,gJ,g) one seesthat w(m) is a
homomorphism from 7L~to 7L~,therebyproving (A.4).

Noticethat (A.5), (A.6), (A.7) arevalid withoutanyassumptionon g, h E G.
Therearemany otheridentitiesinvolving productsonecanderive.For exam-

ple, for any positive integersk, I andany g e

k+l—I k—I i—i

fi w(g,g’,g) = Og(gl’,gk) flw(g,gJ,g) fi w(g,g’,g) , (A.8)
j=0 j=0 /=0

and this implies the symmetry Og(g~~,g1)= Og(gI,gk) This can be proved

as follows: setQk = Og(g1,gk)/fl~i~~w(g,g’,g). The cocyclerelationwith
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(g1) = (gg/gkg) (glggkg) implies that Qk+I = Qk, which is therefore

equalto Qo. Thereis a similar identity with negativepowers:

k+l—I ~ k—i 1—I

fi w(g,g’,g) = w(g,g ~ flw(g,g’,g)flw(g,g-’,~),
/=0 g g ,g j=0 j=0

(A.9)

andrelationsbetweenproductswith positiveandnegativepowers:

/ I—I
flw(g,g’,g) = Og(g~,g

1) fi ~(g,g~,g) , (A.lO)
j=0 j=0

k—I k—I

fl w(g~,g1, g~) = Og(g_k, gk) Ogk (g~, g) fi w(g, gi, g). (A.I 1)
1=0 J=0

The proof of (A.9) is by setting Rk = Og(g_I,gl_k) JJ1~~~1W(g,g1,g);

then (1.1) with (gd) = (g_I,g,g_k,g), (g,g_/,g_k,g) implies Rk+I = Rk,
which is therefore equal to R

1. The proof of (A.l0) is by induction and use

of (1.1) with (gj) = (g, g~
1-1,g’~’, g), (g, g-’-’, g, g1~1), (g-1, g, g1, g),

(g,g~,g”,g).The proof of (A.ll) is again by induction and use of (1.1)
with (gj) = (gkl,g,gk,g), (g,g_k_i,g,gk), (g_l,g_k,g_I,g), (g’g
g_kl,g)~

Note that replacing g by g in (A.l 1) and substitutingthe result in the
original identity we get

Og(gk,gk) Og-k(g~,g) Og~t(gk,g_k) Ogk(gg~) = 1. (A.l2)
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