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1. Introduction

In this paper we present some detailed computations of partition functions
in what is one of the simplest examples of three-dimensional topological field
theory, which was defined by Dijkgraaf and Witten [1]. It is an analog of the
more well-known Chern-Simons theory [2] in the case of finite gauge groups. To
each compact, closed, oriented three-manifold A it associates a complex number
Z (M) (the partition function), which is a topological invariant of M. This
invariant depends only on the finite group G, and the cohomology class of a three-
cocycle @ with values in U(1). In the same way as the Chern-Simons theory
is related to the two-dimensional WZW model, the Dijkgraaf-Witten theory is
related to another class of conformal field theories, the so-called holomorphic
orbifolds [3].

Following ref. [1] we will give an elementary combinatorial definition of
Z (M) in terms of a triangulation. A more abstract definition involving Eilen-
berg-Mac Lane spaces K (G, 1) was also given by the same authors, but we shall
not use it here. Recently in ref. [4] we took another approach, starting from a
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surgery presentation of M to define a three-manifold invariant 7 (M) depending
on the same data G, . More precisely, extending the Reshetikhin-Turaev con-
struction [5,6] to the case of quasi-Hopf algebras [7], we considered invariants
of links colored by the regular representation of a finite-dimensional quasitrian-
gular quasi-Hopf algebra D® (G), and then proved that they are conserved under
Kirby moves [8].

We conjectured that Z (M ) and F (M) are equal (up to a normalization) and
checked it in a few cases. The algebra D® (G) was defined previously in ref. [9],
where 1t was shown that the structure constants of its ring of representations
agree with the fusion rules of ref. [3].

So far a proof of the above conjecture is still lacking. The main difficulty
is to relate the two presentations of M, by triangulation and surgery. In the
sequel we first give the definition and some general properties of the partition
function Z (M). To illustrate these, we present detailed computations of the
invariants of lens spaces Z (L (p.q)), and then give a general formula for the
surgery invariants F(L(p,q)).

Before we start to study the invariants, let us recall the definition of a three-
cocycle. Let G be a finite group. We denote its order by |G|, and the unit element
by e. A three-cocycle is a map G x G x G — U (1) satisfying

w (g1, &2. 83)w (g1, 8283, &4) W (&2. g3. 84)
= w(g182, 83, 84) W(g1, 82, 8384) (1.1)

for all g; € G, i = 1,...,4. We also assume that w Is normalized, i.e.,
w(g1.82,83) = 1 1if at least one of the arguments g; = e. Later we will use
several identities which are consequences of (1.1). They are collected in the
appendix.

One knows [1,4] that the invariants we consider below depend only on the
cohomology class of w: they are invariant under w — @ Jd#. Here » is a normal-
ized two-cochain, i.e.,amap G x G — U(1) such thaty(x,y) = lifxory = e,
and

on(x,yv,z) =qv,2)n(xy, z) ""nlx,yz)nix,y) L (1.2)

Sometimes we will use the following definitions: {C4} - p will denote the
set of conjugacy classes of G, |C4| the number of elementsin Cy and {g.4} 41,
system of representatives of these classes. Also, in this paper the notation (m1, n)
stands for the greatest common divisor of two integers /m and ».

2. Dijkgraaf-Witten invariants

Let M be a compact oriented three-manifold without boundary, and T be a
triangulation. Denote by 77 the set of j-simplices of 7. An oriented tetrahedron
t € T3 is given by an ordered four-tuple of vertices, ¢ = (abcd), a,b,c,d € TO.
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Similarly a triangle is given by an ordered triple (abc) € T2, and an edge by a
couple (ab) € T'.

The definition of the partition function is in many respects analogous to lattice
gauge theory. In particular, the dynamical variables live on the edges. Thus we
define a state tobe amap p : T' — G, (ab) — g, such that for any triangle
(abc) € T2, the flatness condition g, gp- &ea = ¢ is satisfied. We also assign
8ha = &, to the edge (ba) with the opposite orientation.

The values of p on the edges of a tetrahedron t = (abcd) are completely
determined once g, g5, and g.; are given. We define the weight of £ by W, =
w(gap, Che» &ca ), and the weight of a state p by

wip) =[] W (2.1)

€T3

The partition function is a sum over a certain set of states, which must be defined
carefully in order to avoid overcounting due to gauge invariance of W, as we
now explain. Any function Q : 7% — G, a — £, gives rise to a new state
p? : (ab) — Q. 8, 2, ". Tt can be shown that (1.1) implies that W is gauge
invariant, W (p?) = W (p). The group G of gauge transformations acts on the
set of all states M. Consider the subgroup Gy consisting of those £2 which leave a
distinguished point * € TP fixed: 2, = e. Then the Dijkgraaf-Witten partition
function is:

Z(M) =|GI7" Y Wp). (2.2)

pPEM (G

One proves [1,10] that Z (M) is independent of the triangulation T, so that it
is a topological invariant of oriented manifolds. Furthermore, Z (M) /Z (S?) is
multiplicative under connected sum.

Our conjecture is that Z (M) /Z (S?) is equal to the surgery invariant F (M)
described in ref. [4] . In the simpler case of a trivial cocycle this has been proven
by Hennings [13].

Note that if M is connected, then there are no gauge transformations Q2 € Gy
such that p? = p other than the identity. This is because for any vertex a € T9,
there exists a path y, going from x to a consisting of edges of T!. Then for
any vertex a € T°, the ordered product g (y,) of elements gy, along this path
transforms into g% (7;) = g(y,)2;' = g(34), hence £, = e. This implies that
the orbit of any state p has |G|’~! elements, where v is the number of vertices,
and

Z(M) =G| Y W(p). (2.3)

pEM

Proposition 2.1. There is a one-to-one correspondence between M[Gy and
Hom(r, (M), G).
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[Here by m;(M) we really mean the fundamental group =, (M,*) with
basepoint . ]

Proof. To each state we can associate a homomorphism y : 7,(M) — G by
taking the ordered products of elements g,; along closed paths based at =. This
mapping factors through the projection Q : M — M/Gy. Call P the quotient
map M /Gy — Hom(m, (A ), G). Conversely, for any such morphism y we can
construct a state p’ in the following way. First we choose for each a € 79 a path
Ya from x to a. Then, if (ab) € T' we set g, = x([7ap]), where 74 is the
closed path obtained by joining y,, the edge (ab) and the path y, taken with
the opposite orientation, and [y,,] is its equivalence class in 7| (M). Call this
mapping X, X : Hom(z,(M),G) — M, y — p’. Let us now prove that

PoQoX = Idyom(z,(M).6) -
QoXoP = Id/\/t/go :

First notice that if (xa) € T!, then g!,, which is the image by y of the trivial
homotopy class, equals ¢. Along a path y : * — a — --- — a, — %, with
(xar), (a;ai;1), (anx) € T' one can express the ordered product g'(y) as

) = 8la 8hay & = X [Paay)) X ([7a, 1a,])
= X([yalaz"'ya,,,la,,]) = x([yD.

proving the first equality. For the second one, consider p = {g,s}, a represen-
tative of a class modulo Gy, build x = P([p]) and p’ = {g,,} = X(x). We
now define €2, as the ordered product of the elements g, from x to a along the
chosen path y,, and also set 2, = e. Then by definition g, = £, g, Qb_l for
every (ab) € T!, proving that X (x) and p are in the same class modulo Gy. [

An immediate consequence is that Z (S*) = |G|~!, because 7, (S?) = 1.

Before discussing the examples M = L(p, q), we would like to sketch another
description of states in terms of fiber bundles, which is used in refs. [1,11].
Consider principal fiber bundles p : E — M with structure group contained in
G, or G-bundles for short. Two G-bundles p : E — M and p' : E' — M are
called equivalent if there is a homeomorphism 4 : E — E’ such that p’ o & = p.
Now from the definition it is clear that each state p defines a G-bundle over
M: just choose a suitable open neighborhood U, of each a € T° and interpret
the g,; as transition functions in U, N Uy. Conversely, each G-bundle with the
coordinate neighborhoods U, determines a state p € M.

A theorem of ref. [12] implies that two states p and p’ define equivalent
bundles if and only if p’ = p@ for some 2 € G. Hence we have a bijection
between M /G and the equivalence classes of G-bundles. On the other hand, to
each G-bundle we can associate a homomorphism y : 71, (M) — G by lifting the
closed paths in M to the total space. According to another theorem of ref. [12]
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two G-bundles are equivalent if and only if the corresponding homomorphisms
y and x' are equal up to a conjugation: x'(y) = gx(y)g !, for some g € G.
Thus we get another bijection, between equivalence classes of G-bundles and
Hom(7(M),G)/G.

3. Dijkgraaf-Witten invariants for lens spaces

Lens spaces L(p,q), 0 < ¢ < p, (p,q) = 1, are oriented compact three-
manifolds, which result from identifying on the sphere S* = {(x,y) € C?||x|*+
|¥|> = 1} the points which belong to the same orbit under the action of Z, defined
by (x,¥) — (wx, w9y) with w = exp(2in/p).

Let us recall some important results about lens spaces [14]. The fundamental
group of L(p,q) is Z,. L(p,q) and L(p,q’), are homeomorphic if and only if

g =+¢9" (modp) or gq' =+1 (modp). (3.1)

They are of the same homotopy type if and only if there exists an integer a such
that

gq' = +a®> (mod p). (3.2)

In all cases the orientations are preserved if and only if the relevant sign is +.
(Two manifolds M and M’ are said to be of the same homotopy type if and only
if there exist continuous mappings f : M — M’, g : M’ — M,such that fo g
and go f are homotopic to the identity.) For example, L(5,1) and L(5,2) have
different homotopy types, whereas L(7,1) and L(7,2) have the same homotopy
type, but they are not homeomorphic.

A triangulation of L(p, q) is obtained by gluing together p tetrahedra (a;, b;,
¢i,di), 1 =0,...,p — 1 according to the following identification of faces (i + 1
and i + ¢ are understood modulo p):

(ai’bbdi) = (ai+l$bi+laci+l)a (33)
(aj,ci,d;) = (bi+qaci+q,di+q)- (3.4)

The identifications of (3.3) can be realized by embedding the p tetrahedra in
euclidean three-space, leading to a “prismatic solid” with p 4+ 2 vertices a, b, ¢; ,
2p external faces, 3p external edges, and one internal axis (a, ). Then formula
(3.4) is interpreted as the identification of the surface triangles (a,¢;,¢;4) and
(b,CitgsCivieg)-

A state on this triangulation made of p tetrahedra (a,b,¢;,¢ciy1), | € Zp, is
defined by g = gap, 1i = &be,» ki = &, The flatness conditions read

hiv1 = hik; | (3.5)
8ac;, = ghi . (36)
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Then identifying faces (a,¢;,¢;1) and (b,¢iyq,Civ144) giVes
ki = ki+q 5 (3‘7)
ghi = hiyg . (3.8)
Since (p,q) = 1, k; = k is independent of /, (3.8) implies that g7 = ¢ and for
any n, g"h; = hiynq, so thatif n is the inverse of ¢ mod p, one gets 4, .| = g"h;,
which compared to (3.5) gives k = hi‘lg”h,-. Conversely, the data g, h € G

with g# = e determine a state on the above triangulation of L(p, ¢) through the
formulas

g =8w=8  h=g"h ki=h'gh (3.9)
The weight associated to such a state is
p—1 p—1
Wp) = [[wea hik) = [[we, ¢"h h~'g"h)

i=0 i=0
p—1

= [[w(s. g/h h='¢"h). (3.10)
j=0

In this case all gauge transformations are of the form
g — R, 8 97, h—Q, h Q7' (3.11)

Gauge invariance means here that for any g (g? = ¢) and A,

p—1 p—1 )
[[wts. gh, h7'g"h) = [] w(ea g} &3). (3.12)
j=0 j=0

where g4 is a representative of the conjugacy class C4 of g, an identity which one
can prove directly, see formulas (A.2) and (A.3) ofthe appendix. The Dijkgraaf-
Witten prescription to consider a sum over orbits under gauge transformations
with, say, £, = e, therefore amounts to a sum over g only, leading to the
following expression of the invariant of L(p, ¢):

p—1
Z(L(p.gN)Z(SH) = > [[eteg.g

geGlgP=e j=1

p—1 _
= S (G wles g &b (3.13)
A|gh=e Jj=1
Using (A.4) we arrive at the final expression valid for any three-cocycle @ and
any finite group:
Z(L(p.g)) = |GI7" Y |C4l 0, (3.14)

Al gh=e

where w4 = H?;} w (g4, gﬁ, g2.4) is a pth root of unity built from values of w on
the cyclic group generated by g4 and # is the inverse of ¢ mod p. Note that if in
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(2.2) the summation had been taken over the orbits of all gauge tranformations,
instead of over the orbits of Gy, one would have obtained the different number
|G|~ ZAlgﬁ:e ", which may not have the right properties, since the so-called
global gauge transformations would not have been treated in an appropriate way.
Now we would like to see how these invariants behave with respect to the
above classification theorems (3.1}, (3.2). From (3.14) we get immediately

Z(L{p,p—q)) =Z(L(p,q))", (3.15)

so that changing the orientation results in complex conjugation.

Next, suppose that ¢ and ¢’ are invertible mod p and that their product is a
square gq' = a® (modp), denote by c its inverse and by b = ac the inverse of
a, ¢ = b%. Let n,n’ be the inverses of ¢,¢’, and C, = {A4| gf = e}. Since gb is
invertible g — g9 induces a one-to-one mapping of Cp into itself: A — B such
that gg 1s conjugate to gjb. Furthermore |C4| = |Cgl, so that using (A.4) we
can rewrite (3.13) as

p—1 )
Z(L(p,a)/Z(S*) = Y [Co| [ w(gs. g4 g5)
=1

BeEC,
p—1
b iqgh b
= Y I [Jw(e? 5. 54"
AcC, Iy

p—1
STICH ] w84, 5. &%)

jr=1

Y ICsl0F = " |Cal @

Aec,

Z(L(p.g")]Z(S). (3.16)

We have therefore directly shown that for any three-cocycle w and any finite
group, Z (M), in the class of lens spaces, is an invariant which is sensitive
to orientation through complex conjugation, and takes the same value for all
manifolds of the same (oriented) homotopy type. We do not know if this holds
in general.

Let us now specialize to the case of a cyclic group G = Zy whose cohomology
group H3(G,U (1)) is cyclic of order N, with representative cocycles:

wh (x.p,2) = exp [(2i7zl/N2)5(5c +jf—ﬂ—y)] : (3.17)

where / = 0,..., N — 1, and X denotes the integer between 0 and N — | repre-
senting an element x € Zy. wﬁv is equal to | except if x + ¥ > N when its value
isexp(2in/z/N). Put m = (N,p). We shall now prove that in this case (3.14)
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is equal to
Z(L(p,q)) "~ __ (2inlpn ,
—‘Z(S—3) = Zexp }7’12 k N (318)
k=0
where # is the representative in {0,...,p—1} of the inverse of g mod p. If m = 1

this invariant equals 1, otherwise it equals the value of a Gauss sum S(a, m)
with a = Inp/m:

m—1
Z(L(p,9))/Z(S*) = S(a,m) = Y _ exp(2imak?®/m). (3.19)
k=0
To prove (3.18) we translate the multiplicative notations for the group G, taken
to be the group of Nth roots of 1, into additive ones by the formula

g=cexpRing/N), ge{0,....,N—1}.

Then
_ N|p
p _ | =
g'=¢ & Nilpg = prl e
& Fke{l,....m—1}, g=kN/m, (3.20)
and (3.14) reduces to
m—1
Z(L(p.q))/Z (8% = Zexp(2i7r[nk|8kl/m) \ (3.21)
k=0

where |S;| is the number of elements of the set
Sk ={je{l,...,.p-1}|g+jg>N}.
[Remember that from (3.20), g depends on &.] Butsince g(j + m/(m, k)) =
gJj + Nk/(m,k), one has
IS | = %(m,k) [{je{l,....(m/(m,k)) =1} | g + jg > N}|.

Writing

.k (mKkN

I8 =J (m, k) m
and noticing that j — j' = jk/(m, k) is a one-to-one map of Z,,,;(, ) into itself,
we get

Sl = 2 m )11 € 11,0, Om/ (k)Y = 1} [ g+ 7 Om KON m 2 VY.

Now set J = (m/(m,k)) — j. From j'(m,k)N/m = N - J{(m,k)N/m, one
finds
g+ JmKINm>N < Je{l,...k/(mk)},

leading finally to |Sx| = pk/m and to (3.18).
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4. Surgery invariants

All lens spaces L(p,q), 0 < g < p, (p,q) = 1 are known [14] to have a
surgery presentation given by a finite chain of n unknotted circles with integer
surgery coefficients p(,ps,...,pn, all > 2. Such a chain represents the space
L(Ay,, A,_1), where A, is defined recursively by

Ag =1, Ay = pi, Ay = pp2— 1, Ay = p1pp3 —p1 —p3, (4.1)
An(pryovosPn) = PnAn 1 (P15 Pno1) — An2(P1s o Pr2). (4.2)
The last relation is equivalent to 4,/4, | = p, — Ay_2/An_;, leading to the
finite continued fraction:
An(pl,---apn) 1
=pp—- —. (4.3)
An*l(pla'“’pn—l) " ——le
Py
Note that, since 4, — 4,_| = (pp — 1)A,_1 — A3, and py, pa,...,pn > 2, then
Ap> Apy > > A1 > Ap = L. (4.4)

One also has

Ap_ 1 (Dyye s Pr1) Anc i P2y osPn) — A (Dys oo DR) An2(D2y .o Pn1) = 1,

(4.5)
1e.,q9 = Ap_1(Py,...,Py_1) Isprime to p = A,(p,...,pn) and the inverse of
gmodpisq = A,_1(ps,...,pn). The proof of (4.5) goes by induction. Con-
versely, any non-negative rational number p/g greater than 1 can be expressed as
a fraction like (4.3) with all p;’s greater than or equal to 2: set By = p, B, = ¢
and since (p,q) = | one can define recursively strictly decreasing integers
B > 0 and integers g > 2 such that By_| = gy By — Bk, ,. Stop at step n when
B, = 1and g, = B,_,. Then

p BO B2 /( B3>
g _ 20 _ _ L -1 — 2 =,
q Bl £ Bl g % Bz

giving a fraction like (4.3) with (p,....px) = (gn.....q1).
From the data G, w one defines [9] the finite-dimensional algebra D¥(G)

over C in terms of a basis {g|_}, g, x € G as follows:
X

g hl = Og xpy1 Og (X, ¥) g, (4.6)
Xy xy
where
0g(x,y) = w(g. x,y) w(x,y, (xy) 'gxy) w(x,x 'gx,y) 7" (4.7)

This algebra is associative by virtue of (A.1) and has unit element

=) «l.

geG €
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It has the structure of a ribbon quasi-Hopf quasi-triangular algebra, described
in detail in refs. [9,4] allowing one to define topological invariants of three-
manifolds (M) by the method explained in ref. [4] and based on the con-
struction of manifolds by surgery. By induction on n, the number of circles
defining the lens space by surgery, we find

n-2 n—1
F(L(An, Ay 1)) = Z H gg,,k (ng-H’g‘PkJrl) H ngl (gpml’/’gl’z"])
glgin=e k=0 =1
n pm—I1
IT ] wte™ 1 gmfm gm0y, (4.8)
m=1j,=1
where P, = (—1)X4, (py,...,px) and A, is given by (4.2). As a consequence of

our conjecture, this expression must be equal to (3.14). We have checked this
equality with a computer for G = Zy, w = w’N. It is clear that a proof of this
equality would already rely on a consequent number of identitics such as those
given in the appendix. So far we have only been able to prove it for any (7, w in
the cases n = 1, where (4.8) reduces to (3.13),and n = 2, (p;,p2) = 1.

A.C. thanks LAPP for the kind hospitality and friendly atmosphere.

Appendix A

We give here some identities involving normalized cocycles which we found
rather useful. The first one establishes that (4.7) defines a “twisted two-cocycle”,
1.€.,

Og(x,¥)05(xy,z) = 0,(x,¥2)0,-15(y,2) . (A.1)

To prove it, simplify successively (A.1) with the help of (1.1) written with
(g) replaced by (x,y, z, (xyz)'gxyz), (x,y, (xy)~'gxy,z), (g.x,y,z) and
finally (x,x 'gx,y, z).

In the following, we suppose that p is a positive integer such that g7 = e, but
h can be any element of (. Then the results which are used in the main text are

p—1 p—-1

[[wts.e’hh'g"h) = [[wig.g’.¢" , (A.2)
j=0 Jj=0

p—1 p—1

[[eote.g).8) = [[oth gh.h~ gh.h"" gh), (A.3)
j=0 j=0

p—-1

[Jw(gm. &', ") = (we)™, (A.4)

j=0
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where wyg is a pth root of 1. Together (A.3) and (A.4) imply that w, = w4 only
depends on the conjugacy class C4 of g. To prove (A.2), we form the product
of k copies of the cocycle condition (1.1), substituting (g;) with (g, g/, g", h),
j =0,...,k—1,and divide it by a similar product for (g;) = (g, g’,h, h~'g"h).
We obtain

Y wig.glg") 152 ' w(g, g/ h)

jI;IO w(g g'h,h='g"h) T\ jw(g. g/ h) T|Zgw(g, 8/ h)

w(gk, g" h)
_ A.
ek h kg k) (A.5)

Setting k = p we get (A.2). Another useful formula is the case n = 1 of (A.5):

k—1 k—1

[[wte.g7h h " gh) = 0,(g%. h) [Jw(g. g, 8). (A.6)
j=0 j=0

To prove (A.3), form the products of k cocycle relations for (g;) replaced
by (g.h,h~'g/h,h=lgh), (h~", gh,h~'g/h,h='gh), (h"' h,h~'g/h,h~'gh),
then simplify a factor involving five w’s using the cocycle relations written with
(h=" h,h='gch h="gh) and (h=',h,h—'gh,h—'g*h). This gives

k—1

[{w(s.g’h,h7 gh) = 6,(h,h~"g"n) Hw(h Lgh,h='g/h h~'gh),

Jj=0 j=0

(A.7)

thus setting k = p and using (A.2) leads to (A.3). To prove (A.4) consider the
product of p cocycle relations for (g;) = (g™, g/, g™, g™). It is then easy to
see that n — Hj w(g™, g’, g") is a homomorphism from the additive group z,
into U (1). Therefore this product is of the form

p—1
[[ (g™ ¢’ ") = expQinaw(m)n/p).
ji=0
By a similar argument with (g;) = (g™, g™, g/, g) one sees that w(m) is a
homomorphism from Z, to Z,, thereby proving (A.4).
Notice that (A.5), (A.6), (A.7) are valid without any assumptionon g, s € G.
There are many other identities involving products one can derive. For exam-
ple, for any positive integers k,/ and any g € G-

ki1 k-1 -1
[[ e g) =0, " [[og.ee) [[oesls), (AS8)
Jj=0 j=0 j=0

and this implies the symmetry 0, (g*, g") = 6,(g', g*). This can be proved
as follows: set Oy = 0,(g’, g%/ Hk+[ "w(g, g’,g). The cocycle relation with
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(8) = (g,8',8% g), (¢',2.8" g) implies that Q| = Qy, which is therefore
equal to Jy. There is a similar identity with negative powers:

k+i-1
_j ( )
II ogs7.8) = ;g_‘,g g; Hw(gg’,g)Hw(gg l.8) .
j=0 j 0
(A.9)
and relations between products with positive and negative powers:
I _ -1 »
H (g.87,8) =0,(g7" &) [[w(g.8".2) (A.10)
j= j=0
k- _ k-1 .
H g7h87.87) =0,(8758") 0,487 8) [[wig. 8% 8). (A1D)
o i

The proof of (A.9) is by setting Ry = 0,(g~' g“k) Hk+[ wl(g, g7, g);

then (1.1) with () = (¢7'. 2,275, ¢), (g,8 7', %, g) implies Ry, = Ry,
which is therefore equal to R;. The proof of (A.10) is by induction and use

of (1.1) with (&) = (g.¢77, ¢t g), (g.e7 " g. '), (g g.¢. ).
(g,87',g'.g). The proof of (A.11) is again by induction and use of (1.1)
with (g1) = (g7% "' g8, 8). (g.¢7% " g.8%). (g7 g% g7 g). (g7 6,
—k—1
g7, 8).
Note that replacing ¢ by g~ ! in (A.11) and substituting the result in the
original identity we get

O0g(g %, %) 0, (87", 8) 0, 1(g5, 87F) (g, g7 = L. (A.12)
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